О ПРИРОДЕ КОСМОЛОГИЧЕСКИХ СИЛ ОТТАЛКИВАНИЯ

А. Г. Жилкин, В. А. Клименко, А. М. Фридман

ДИНАМИКА ДВУМЕРНЫХ СФЕРИЧЕСКИХ МИРОВ

Исследована динамика двумерных однородных сферически симметричных самогравитирующих миров (2-миров). Показано, что последовательное описание динамики 2-миров в рамках общей теории относительности (ОТО) с учётом дополнительного к этим мирам третьего крупномасштабного пространственного измерения приводит к физически наблюдаемому эффекту. В 2-мирах, кроме сил притяжения, возникают силы отталкивания. Источником этих сил является тепловая энергия частиц, заполняющих 2-миры. В трёхмерном пространстве эти силы являются центробежными. Они действуют во внешнем для 2-миров третьем пространственном измерении, растягивая их. В 2-мирах эти силы проявляются как силы отталкивания. Рассматриваемый в настоящей работе пример, вследствие наглядности и простоты, является важным. Обобщенный на трёхмерный случай, он позволяет, как мы полагаем, правильно понять природу космологических сил отталкивания в однородной изотропной Вселенной.

Ключевые слова: космологические силы отталкивания, общая теория относительности, центробежные силы, двумерные миры.

1. ВВЕДЕНИЕ

В последнее десятилетие в космологии возникло обоснованное мнение, что динамику Вселенной определяют не только силы тяготения, что обычно утверждалось ранее (см., например, [1–3]), но и в не меньшей степени силы отталкивания. По-видимому, первым чётким указанием на это были наблюдательные данные о зависимости между видимой звёздной величиной и красным смещением для сверхновых типа Ia [4; 5].

В настоящее время наиболее распространённым (см., например, [6-12]) является утверждение о том, что источником космологических сил отталкивания является «тёмная энергия». Полагают, что «тёмной энергией» является некоторая вакуумоподобная среда. Λ -член в уравнениях Эйнштейна даёт описание её макроскопических свойств (см., например, [6; 13]). Недостатком объяснения космологических сил отталкивания на основе Λ -члена является отсутствие понимания микроскопических свойств «тёмной энергии». Это связано с принципиальными трудностями описания этих свойств в рамках известных теорий.

В работах [14; 15] рассмотрено объяснение космологических сил отталкивания в однородной изотропной Вселенной, не основанное на Л-члене. Показано, что, кроме эйнштейновских сил отталкивания, теоретически в общую теорию относительности (OTO) могут быть введены и другие космологические силы отталкивания. Описан вариант космологических сил отталкивания, связанных с зависимостью тепловой энергии космической среды от радиуса кривизны Вселенной. Показано, что эти силы являются центробежными по своей природе. Предложена модель однородной изотропной Вселенной с учётом центробежных космологических сил отталкивания (С-модель). Она применена для объяснения важных наблюдательных данных.

В работах [14; 15] космологические уравнения А. А. Фридмана рассматриваются как описывающие движение Вселенной в четвёртом фиктивном [1] пространственном измерении. Целью программы наших исследований является доказательство возможности последовательной реализации в рамках ОТО идеи о четвёртом крупномасштабном пространственном измерении как реально существующего и приводящего к наблюдаемым эффектам.

Нами рассматриваются модели однородных центрально-симметричных безграничных гравитирующих систем. Они являются вариантами космологических моделей («Мир на бране»), в которых Вселенная рассматривается как трёхмерная брана в четырёхмерном пространстве [16]. Однако в отличие от предыдущих работ (см., например, обзор [17]), посвященных развитию различных аспектов этой модели, в наших работах учитываются не только нормальные к бране скорости частиц космической среды, но и тангенциальные скорости. Учёт тангенциальных скоростей позволяет описать центробежные силы, действующие на каждый элемент браны во внешнем для неё пространственном измерении. С точки зрения типичного наблюдателя, находящегося на бране, эти силы проявляются как космологические силы отталкивания.

Взаимосвязь параметров частиц с натяжением браны в настоящей работе не рассматривается. Используется подход, в котором частицы рассматриваются как классические.

Настоящая работа является первой в цикле наших работ, посвящённых исследованию динамики безграничных центральносимметричных самогравитирующих миров. На простом наглядном примере 2-мира изложена методика описания динамики этих миров.

В следующих работах эта методика будет использована для описания динамики однородной изотропной Вселенной. Результатом её применения является естественное появление космологических сил отталкивания в уравнениях, описывающих эволюцию Вселенной и имеющих ясный физический смысл.

В этой работе в рамках ОТО рассмотрена следующая идеализированная система. Гравитирующие частицы однородно распределены по поверхности сферы и движутся в самосогласованном гравитационном поле. Предполагается, что расстояния между частицами много больше размеров частиц, а их общее количество N велико. При этом, как известно (см., например, [18]), влияние парных столкновений на частицы в $N/\ln N$ раз меньше, чем влияние на них самосогласованного поля. Поэтому при $N \gg 1$ столкновения можно не учитывать. Считается, что в сферической системе координат, центр которой совпадает с центром гравитирующей сферы, в начальный момент времени все частицы имеют одинаковые радиальные v_{\parallel} , а также и тангенциальные v_{\perp} скорости. Распределение тангенциальных скоростей является изотропным.

Вследствие предполагаемых начальных условий, а также бесстолкновительности системы, все частицы относительно центра в радиальном направлении движутся одинаково. Они все время остаются равноудаленными от центра сферы, у них одинаково меняются продольная v_{\parallel} и поперечная v_{\perp} компоненты скорости. Частицы однородно распределены по поверхности сферы переменного радиуса a(t). Частицы, удовлетворяющие указанным условиям, для краткости называем 2-частицами, а однородную и изотропную сферическую гравитирующую оболочку, состоящую из 2-частиц, — 2-миром.

Динамику 2-мира можно описывать, используя различные системы координат. На рис. 1 приведены некоторые из них. Динамику 2-мира удобно рассматривать в трёхмерной сферической системе координат (a, θ , ϕ). В то же время его динамику с точки зрения 2-наблюдателей естественно описывать, используя двумерную, «внутреннюю» для них полярную систему координат (R_2 , ϕ). Эту систему координат будем называть системой 2-наблюдателей.

2-наблюдатель — это некоторый абстрактный объект, постоянно находящийся на гравитирующей сфере и совершающий относительно её центра лишь радиальные движения. Система отсчёта 2наблюдателей — это бесконечное их множество, равномерно и непрерывно заполняющее 2-мир. Система отсчёта 2-наблюдателей является сопутствующей системой координат.

 x_3 — декартова система координат

Статья организована следующим образом. В разделе 2 определена метрика четырёхмерного пространства-времени, связанного с 2-миром. Динамика 2-мира в шварцшильдовой системе координат исследована в разделе 3. В разделе 4 динамика 2-мира изучена в сопутствующей системе координат. В разделе 5 2-миры описаны в ньютоновском приближении. Информация о наших работах, в которых, как мы полагаем, дано объяснение природы Эйнштейновских сил отталкивания, приведена в разделе 6. В заключении перечислены основные результаты работы.

2. МЕТРИКА ЧЕТЫРЁХМЕРНОГО ПРОСТРАНСТВА-ВРЕМЕНИ, СВЯЗАННОГО С 2-МИРОМ

Предполагаем, что гравитационное поле 2-мира в трёхмерном пространстве обладает центральной симметрией. Эта симметрия в процессе эволюции 2-мира сохраняется. Макроскопическое движение вещества 2-мира в трёхмерной сферической системе координат в каждой точке направлено по радиусу. С учётом сделанных предположений метрика четырёхмерного пространствавремени является шварцшильдовой и может быть записана в виде [19]

$$ds^{2} = e^{2\Phi}c^{2}dt^{2} - e^{2\Lambda}dr^{2} - r^{2}d\Omega^{2}, \quad (1)$$

где $\Phi(r,t)$ и $\Lambda(r,t)$ — некоторые функции радиальной координаты r и «времени» $t, d\Omega^2 = d\theta^2 + \sin^2 \theta d\phi^2$. Символ Λ обычно в космологии используется для обозначения космологической постоянной. В настоящем параграфе он обозначает некоторую функцию $\Lambda(r,t)$, которая наряду с функцией $\Phi(r,t)$ описывает метрические свойства пространства-времени. Подразумевая, что x^0, x^1, x^2, x^3 , соответственно, ct, r, θ , ϕ , имеем для отличных от нуля компонент метрического тензора выражения

$$g_{00} = e^{2\Phi}, \quad g_{11} = -e^{2\Lambda}, \\ g_{22} = -r^2, \quad g_{33} = -r^2 \sin^2 \theta,$$
(2)

$$g^{00} = e^{-2\Phi}, \quad g^{11} = -e^{-2\Lambda}, g^{22} = -r^{-2}, \quad g^{33} = -r^{-2}\sin^{-2}\theta.$$
(3)

Символы Кристоффеля $\Gamma^{\mu}_{\alpha\beta}$ рассчитываем по формуле

$$\Gamma^{\mu}_{\alpha\beta} = \frac{1}{2}g^{\mu\nu} \left(\frac{\partial g_{\nu\alpha}}{\partial x^{\beta}} + \frac{\partial g_{\nu\beta}}{\partial x^{\alpha}} - \frac{\partial g_{\alpha\beta}}{\partial x^{\nu}}\right).$$
(4)

Вычисление приводит к следующим выражениям (штрих означает дифференцирование по r, а точка над буквой — дифференцирование по ct):

$$\begin{aligned}
 \Gamma^{0}_{00} &= \dot{\Phi}, & \Gamma^{0}_{10} = \Phi', \\
 \Gamma^{0}_{11} &= \dot{\Lambda} e^{2\Lambda - 2\Phi}, & \Gamma^{1}_{00} = \Phi' e^{2\Phi - 2\Lambda}, \\
 \Gamma^{1}_{01} &= \dot{\Lambda}, & \Gamma^{1}_{11} = \Lambda', \\
 \Gamma^{1}_{22} &= -r e^{-2\Lambda}, & \Gamma^{1}_{33} = -r \sin^{2} \theta e^{-2\Lambda}, \\
 \Gamma^{2}_{12} &= \Gamma^{3}_{13} = r^{-1}, & \Gamma^{2}_{33} = -\sin \theta \cos \theta, \\
 \Gamma^{2}_{23} &= \operatorname{ctg} \theta.
 \end{aligned}$$
(5)

Все остальные компоненты $\Gamma^{\mu}_{\alpha\beta}$ (кроме тех, которые отличаются от написанных перестановкой индексов α и β) равны нулю.

Для определения вида функции $\Phi(r,t)$ и $\Lambda(r,t)$ используем уравнения Эйнштейна для областей внутри гравитирующей сферической поверхности и вне её. Уравнения Эйнштейна для областей, где отсутствует материя, записываются в виде

$$R_{\mu\nu} = 0, \qquad (6)$$

где тензор Риччи

$$R_{\mu\nu} = \frac{\partial\Gamma^{\beta}_{\mu\nu}}{\partial x^{\beta}} - \frac{\partial\Gamma^{\beta}_{\mu\beta}}{\partial x^{\nu}} + \Gamma^{\beta}_{\mu\nu}\Gamma^{\gamma}_{\beta\gamma} - \Gamma^{\gamma}_{\mu\beta}\Gamma^{\beta}_{\nu\gamma}.$$
 (7)

Используя (3), (5) и (7), находим отличные от нуля компоненты этого тензора:

$$R_{00} = e^{2\Phi - 2\Lambda} \times \left(\Phi'' + \Phi'^2 - \Phi'\Lambda' + \frac{2}{r}\Phi' \right) + \left(\dot{\Phi}\dot{\Lambda} - \ddot{\Lambda} - \dot{\Lambda}^2 \right),$$

$$R_{11} = -\left(\Phi'' + \Phi'^2 - \Phi'\Lambda' - \frac{2\Lambda'}{r} \right) - (8)$$

$$- e^{2\Phi - 2\Lambda} \left(\dot{\Phi}\dot{\Lambda} - \ddot{\Lambda} - \dot{\Lambda}^2 \right),$$

$$R_{22} = e^{-2\Lambda} \left[r \left(\Lambda' - \Phi' \right) - 1 \right] + 1,$$

$$R_{33} = \sin^2 \theta R_{22},$$

$$R_{01} = \frac{2}{r}\dot{\Lambda}.$$

С учётом (8) уравнения Эйнштейна (6) запишутся в виде

$$e^{-2\Lambda}\left(\frac{2\Phi'}{r} + \frac{1}{r^2}\right) - \frac{1}{r^2} = 0,$$
 (9)

$$e^{-2\Lambda}\left(\frac{2\Lambda'}{r} - \frac{1}{r^2}\right) + \frac{1}{r^2} = 0,$$
 (10)

$$\dot{\Lambda} = 0. \tag{11}$$

Из (11) следует, что Λ не зависит от времени. Складывая уравнения (9) и (10), находим $\Lambda' + \Phi' = 0$. Это означает, что

$$\Lambda + \Phi = f(t), \tag{12}$$

где f(t) — функция только времени t. Выбор интервала ds^2 в виде (1) оставляет за собой ещё возможность произвольного преобразования времени. С его помощью всегда можно обратить в (12) f(t) в нуль и считать, что $\Lambda + \Phi = 0$.

Уравнения (9), (10) легко интегрируются и дают

$$e^{2\Phi} = e^{-2\Lambda} = 1 + \frac{\text{const}}{r}.$$
 (13)

При рассмотрении решений во внешней области к 2-миру из (13) следует, что на бесконечности $e^{-2\Lambda} = e^{2\Phi} = 1$, т. е. при $r \to \infty$ метрика является галилеевой. Для решений во внутренней области к 2-миру

из условия отсутствия особенности в поведении метрики при $r \to 0$ следует считать, что во всех точках этой области $e^{-2\Lambda} = e^{2\Phi} = 1$. Это означает, что метрика во внутренней области к 2-миру является галилеевой. Пространство во внутренней области к 2-миру является плоским. Гравитационное поле во внешней к нему области является статическим. На больших расстояниях метрика пространства-времени соответствует ньютоновскому гравитационному полю точечной частицы.

Итак, во внутренней области к 2-миру константа интегрирования в (13) равна нулю. Чтобы определить значение этой константы во внешней области к 2-миру заметим, что на больших расстояниях от 2мира гравитационное поле является слабым и должен иметь место закон Ньютона. При этом метрический коэффициент g_{00} определяется формулой

$$g_{00} = 1 - \frac{2GM}{c^2 r} \tag{14}$$

(см., например, § 87, § 99 [1]). В (14) M — полная масса 2-мира, которая не зависит от времени и является его важнейшим параметром. Отметим, что эта масса учитывает все формы энергии частиц 2-мира, в том числе и энергию их гравитационного взаимодействия.

Учитывая (2), (13) и (14), находим, что в (13) const = $-2GM/c^2$. Эта величина имеет размерность длины. Величина

$$r_g = \frac{2GM}{c^2} \tag{15}$$

определяет гравитационный радиус 2-мира.

Таким образом, пространственновременная метрика во внутренней области к 2-миру является галилеевой, а во внешней к нему области — метрикой Шварцшильда. Эту метрику запишем в стандартном виде (см., например, [1–3]):

$$ds^{2} = (1 - r_{g}/r) c^{2} dt^{2} - \frac{dr^{2}}{1 - r_{g}/r} - r^{2} d\Omega^{2}.$$
 (16)

Сравнивая (1), (16), находим

$$e^{2\Phi} = e^{-2\Lambda} = 1 - \frac{r_g}{r}.$$
 (17)

Отметим, что метрика (16) зависит только от полной массы 2-мира.

Пространственная метрика в четырёхмерном пространстве-времени, в котором происходит эволюция 2-мира, определяется формулой

$$dl^{2} = \frac{dr^{2}}{1 - r_{g}/r} + r^{2} \left(d\theta^{2} + \sin^{2} \theta d\phi^{2} \right).$$
(18)

В метрике (16) длина окружности с центром в точке r = 0 равна $2\pi r$. В то же время расстояние между двумя точками r_1 и r_2 на одном и том же радиусе даётся интегралом

$$\int_{r_1}^{r_2} \frac{dr}{\sqrt{1 - r_g/r}} \ge r_2 - r_1.$$
(19)

Это означает, что геометрия трёхмерного пространства (r, θ, ϕ) , охватывающего 2мир, не является евклидовой. В то же время во внутренней области к 2-миру пространственная геометрия евклидова.

Чтобы понимать смысл «времени» t, надо учитывать, что в метрике (16) метрический коэффициент

$$g_{00} = 1 - r_g/r \le 1, \tag{20}$$

а истинное время определяется формулой

$$d\tau = \frac{1}{c}\sqrt{g_{00}}dt \tag{21}$$

(см. § 84 [1]). Из (20) и (21) видно, что $d\tau \leq dt$. Знак равенства имеет место при $r \to \infty$. В точках, где r > a (a — радиус 2-мира), происходит «замедление» времени. Замедление тем значительнее, чем ближе $r \kappa r_{a}$.

3. ДИНАМИКА 2-МИРА В ШВАРЦШИЛЬДОВОЙ СИСТЕМЕ КООРДИНАТ

3.1. Уравнение движения 2-мира в шварцшильдовой системе координат

Учитывая сферичность и однородность 2-мира, его эволюцию удобно изучать в трёхмерной сферической системе координат (см. рис. 1). Динамика этого мира описывается уравнением движения 2-частиц по радиусу. Чтобы получить это уравнение, учтём, что, согласно ОТО, эти частицы движутся по геодезическим в четырёхмерном пространстве-времени. Уравнение геодезических имеет вид (см., например, [1, § 87])

$$\frac{d^2x^{\mu}}{ds^2} + \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{ds} \frac{dx^{\beta}}{ds} = 0.$$
 (22)

В центральном поле движение частиц является плоским. В самом деле, записывая (22) с учётом (5), для компоненты $\mu = 2$ $(x^2 = \theta)$ находим

$$\frac{d^2\theta}{ds^2} + \frac{2}{a}\frac{da}{ds}\frac{d\theta}{ds} - \sin\theta\cos\theta\left(\frac{d\phi}{ds}\right)^2 = 0.$$
(23)

Здесь и далее a — радиальная координата 2-частиц. Величина а определяет радиус 2-мира в сферической системе координат. Уравнение (23) существенно упрощается для частиц, у которых $\theta_0 = \pi/2$, $(d\theta/ds)_0 = 0$ (индекс ноль здесь и далее относится к величинам, заданным в начальный момент времени t₀). Из (23) видно, что для этих частиц не только $\theta_0 = \pi/2$ и $(d\theta/ds)_0 = 0$, но и $(d^2\theta/ds^2)_0 = 0$. Это означает, что для них переменная θ всегда будет равной $\theta_0=\pi/2$ и траектории рассматриваемых частиц являются плоскими. Очевидно, что траектории и всех других 2-частиц также являются плоскими. Далее записываем уравнения, описывающие движение 2-частиц в экваториальной плоскости ($\theta = \pi/2$).

Полагая $\mu = 3 \ (x^3 = \phi)$, из (22) находим

$$\frac{d^2\phi}{ds^2} + \frac{2}{a}\frac{da}{ds}\frac{d\phi}{ds} + 2\operatorname{ctg}\theta\frac{d\theta}{ds}\frac{d\phi}{ds} = 0.$$
(24)

Для частиц, движущихся в экваториальной плоскости, $d\theta/ds = 0$. Учитывая это и интегрируя (24), получаем интеграл движения, связанный с угловым моментом 2-частицы:

$$L = mca^2 \frac{d\Phi}{ds},\tag{25}$$

где *m* — масса покоя частицы.

Компонента уравнения (22), соответствующая $\mu = 0$, имеет вид

$$\frac{d^2x^0}{ds^2} + 2\frac{d\Phi}{da}\frac{da}{ds}\frac{dx^0}{ds} = 0.$$
 (26)

Учитывая, что $e^{\Phi} = \sqrt{1 - r_g/a}$, запишем (26) в виде

$$\frac{d}{ds}\left[\left(1-\frac{r_g}{a}\right)\frac{dx^0}{ds}\right] = 0.$$
 (27)

Отсюда находим интеграл, связанный с полной энергией 2-частицы:

$$E = mc^2 \left(1 - \frac{r_g}{a}\right) \frac{dx^0}{ds}.$$
 (28)

Учитывая (28), получаем

$$\frac{dx^0}{ds} = \frac{E}{mc^2} \left(1 - \frac{r_g}{a}\right)^{-1}.$$
 (29)

Уравнение для определения da/dt можно получить следующим образом. Учитываем, что для 2-частиц, движущихся в экваториальной плоскости, квадрат интервала имеет вид

$$ds^{2} = e^{2\Phi}c^{2}dt^{2} - e^{-2\Phi}da^{2} - a^{2}d\phi^{2}.$$
 (30)

Это выражение можно записать в виде

$$ds^{2} = e^{2\Phi}c^{2}dt^{2}\left(1 - \frac{v^{2}}{c^{2}}\right),$$
 (31)

где $v^2 = v_{\parallel}^2 + v_{\perp}^2$. Величины v_{\parallel} и v_{\perp} определяются формулами:

$$v_{\parallel}^{2} = \frac{e^{-2\Phi}}{e^{2\Phi}} \left(\frac{da}{dt}\right)^{2} =$$

$$= \left(1 - \frac{r_{g}}{a}\right)^{-2} \left(\frac{da}{dt}\right)^{2},$$
(32)

$$v_{\perp}^{2} = \frac{a^{2}}{e^{2\Phi}} \left(\frac{d\Phi}{dt}\right)^{2} =$$

$$= \frac{a^{4}}{e^{2\Phi}} \left(\frac{d\Phi}{ds}\right)^{2} \frac{1}{a^{2}} \left(\frac{ds}{dt}\right)^{2}.$$
(33)

Учитывая (25), из (33) получаем

$$v_{\perp}^{2} = \frac{L^{2}}{m^{2}a^{2}} \left(1 - \frac{v^{2}}{c^{2}}\right).$$
(34)

Эту формулу перепишем в виде

$$L = \frac{mv_{\perp}a}{\sqrt{1 - v^2/c^2}}.$$
 (35)

В нерелятивистском пределе угловой момент движения частицы

$$L = mv_{\perp}a. \tag{36}$$

Используя (29) и (31), находим

$$E = \frac{mc^2 \left(1 - r_g/a\right)^{1/2}}{\sqrt{1 - v^2/c^2}}.$$
 (37)

В нерелятивистском пределе

$$E = mc^{2} + \frac{1}{2}mv^{2} - \frac{GMm}{a}.$$
 (38)

Видно, что E является полной энергией 2частицы. Она учитывает и потенциальную энергию частицы в гравитационном поле.

Используя (35), (37), получаем формулу, определяющую изменение тангенциальной скорости 2-частиц в процессе эволюции 2-мира. Она имеет вид

$$v_{\perp}^{2} = \frac{L^{2}c^{2}}{E^{2}a^{2}} \left(1 - \frac{r_{g}}{a}\right).$$
(39)

Подставляя (32), (39) в (37), получаем формулу, определяющую движение 2-мира в третьем пространственном измерении. Эту формулу удобно записать в виде

$$\frac{E}{1 - r_g/a} \frac{da}{cdt} = \left[E^2 - U^2(a) \right]^{1/2}, \qquad (40)$$

где

$$U(a) = m c^{2} \times \left[\left(1 - \frac{r_{g}}{a} \right) \left(1 + \frac{L^{2}}{m^{2}c^{2}a^{2}} \right) \right]^{1/2}.$$
(41)

Функция U(a) играет роль «эффективной потенциальной энергии» в том смысле, что условием $E \ge U(a)$ определяются (аналогично нерелятивистской теории) допустимые области изменения радиуса 2-мира. На рис. 2 изображены кривые U(a) для различных значений параметра L 2-мира.

3.2. Стационарные 2-миры

Стационарным состояниям 2-миров соответствуют круговые орбиты 2-частиц. Стационарные 2-миры однозначно определяются заданием их массы M и удельного момента 2-частиц L/m. Считаем, что все 2-частицы имеют одинаковые значения удельного момента.

Для стационарных 2-миров их радиусы aи значения энергий E 2-частиц не являются независимыми параметрами. При заданных значениях r_g и $L/(mcr_g)$ величины a и Eопределяются экстремумами функции U(a). Минимумы функции U(a) соответствуют

Рис. 2. Графики функции U(a) (см. (41)) для различных значений параметра L2-мира: $1 - L = 0; 2 - L = \sqrt{3}mcr_g;$ $3 - L = 2mcr_g; 4 - L = 3mcr_g$

гравитационно-устойчивым 2-мирам, а максимумы — гравитационно-неустойчивым 2мирам относительно малых сферически симметричных возмущений.

Совместное решение уравнений U(a) = E, dU/da = 0 даёт

$$\frac{a_{1,2}}{r_g} = \frac{L^2}{m^2 c^2 r_g^2} \left(1 \pm \sqrt{1 - \frac{3m^2 c^2 r_g^2}{L^2}} \right), \quad (42)$$

$$\frac{E_{1,2}}{mc^2} = \sqrt{\frac{2r_g}{a_{1,2}} \left(1 - \frac{r_g}{a_{1,2}}\right) \frac{L}{mcr_g}}.$$
 (43)

Знак плюс соответствует гравитационноустойчивым, а знак минус — гравитационнонеустойчивым 2-мирам, определяемым параметрами r_g и L. На рис. 3 изображена зависимость a/r_g от $L/(mcr_g)$ для стационарных 2-миров. Её верхняя ветвь даёт радиусы устойчивых, а нижняя — неустойчивых 2-миров.

Стационарные 2-миры могут существовать лишь в случаях, когда вращательные моменты 2-частиц не меньше, чем $\sqrt{3}mcr_g$. При значениях параметра $L < \sqrt{3}mcr_g$ стационарных состояний 2-мира не существует.

Как показывает рис. 3, устойчивые стационарные 2-миры имеют радиусы *а* большие, чем $3r_a$. Наименьший размер этих 2-

Рис. 3. Зависимость a/r_g от $L/(mcr_g)$ для стационарных 2-миров: функция $a_1(L)$ определяет устойчивые 2миры, функция $a_2(L)$ определяет неустойчивые 2-миры

миров характеризуется следующими параметрами:

$$a = 3r_g, \ L = \sqrt{3}mcr_g, \ E = \sqrt{8/9}mc^2.$$
 (44)

Неустойчивые стационарные 2-миры имеют радиусы меньшие, чем $3r_g$. Малые возмущения их размеров, связанные с их уменьшением, приводят к сжатию 2-миров до размера r_g . Радиальные возмущения неустойчивых стационарных 2-миров, связанные с увеличением их радиуса, сопровождаются неограниченным расширением этих миров.

3.3. Нестационарные 2-миры

Если при заданных значениях параметров r_g и L, размер 2-мира a и энергия 2-частиц E не удовлетворяет условиям (42), (43), то 2-мир не является стационарным. Качественный анализ возможных типов решений, описывающих такие миры проведём учитывая вид функции U(a) (см. рис. 2).

Случай $L < \sqrt{3}mcr_q$

При $L < \sqrt{3}mcr_g$ функция U(a) является монотонно растущей. При этом оказывают-

ся возможными два типа решений, описывающих динамику 2-миров: ϕ инитные решения, когда энергия 2-частиц $E < mc^2$, и инфинитные решения для 2-миров с энергией частиц $E \ge mc^2$ (см. рис. 4).

Рис. 4. Вид функции U(a) (см. (41)) при значениях параметра $L < \sqrt{3}mcr_g$ (а) и вид решений a(t) уравнения (40) при значениях параметра $L < \sqrt{3}mcr_g$ (б), где $1 - E < mc^2$, $2 - E \ge mc^2$, режим сжатия, $3 - E \ge mc^2$, режим расширения

Для решений 1, 2 и 3 (см. рис. 4б) состояние $a = r_g$ является «чёрной дырой». Покажем, что время входа 2-мира в состояние «чёрная дыра», и как симметричное ему время выхода из этого состояния, в шварцшильдовой системе отсчёта оказывается бесконечным.

При *а* близких к r_g , как видно из (41), значение U(a) мало отличается от нуля. Учитывая это, уравнение (40), решение которого определяет зависимость a(t), запишем в виде

$$\frac{1}{1 - r_g/a}\frac{da}{ddt} = 1. \tag{45}$$

Считая δ малой, но конечной величиной, найдем время эволюции 2-мира от размера $a = r_g + \delta$ до $a = r_g + \varepsilon$ при $\varepsilon \to 0$. Из (45) находим

$$c\left(t_{\varepsilon} - t_{\delta}\right) = \int_{r_g + \delta}^{r_g + \varepsilon} \frac{da}{1 - r_g/a}.$$
 (46)

Интеграл расходится при $a \rightarrow r_g$ как $-r_g \ln(a-r_g)$. Отсюда следует асимптотический закон приближения $a \ltimes r_g$:

$$a - r_a = \operatorname{const} e^{-ct/r_g}.$$
 (47)

Таким образом, конечная стадия перехода 2мира в состояние «чёрная дыра» описывается экспоненциальным законом с характерным временем r_g/c . Время перехода в это состояние бесконечно. Это в шварцшильдовой системе отсчёта означает так же, что выход 2-мира наружу из состояния «чёрная дыра», если предположить, что это состояние для 2-мира является «начальным», имел место при $t \to -\infty$. Для потенциала U(a) (см. рис. 4а) не существует стабильных и колебательных состояний 2-миров.

Случай $L > \sqrt{3}mcr_g$

Для значений параметра $L > \sqrt{3}mcr_g$ график, качественно определяющий вид функции U(a) (см. (41)), изображён на рис. 5, в котором приведены уровни энергий 2-частиц E, соответствующие различным типам решений уравнения (40).

Рис. 5. Схематичное изображение графика U(a) (см. (41)) при значениях параметра $L > \sqrt{3}mcr_g$

При $L > \sqrt{3}mcr_g$ функция U(a) имеет один минимум и один максимум. При увеличении L от $\sqrt{3}mcr_g$ до ∞ координаты минимумов возрастают от $3r_g$ до ∞ (а соответствующие энергии E_1 — от $\sqrt{8/9}mc^2$ до mc^2); координаты максимумов уменьшаются от $3r_g$ до $3r_g/2$ (а соответствующие энергии E_2 увеличиваются от $\sqrt{8/9}mc^2$ до ∞). Значения $a_{1,2}$ и $E_{1,2}$ (см. рис. 5) определяются формулами (42), (43). При заданных значениях параметров r_g и L они соответствуют стационарным 2-мирам. При энергиях 2-частиц E не равных E_1 или E_2 , как видно из рис. 5, возможны четыре типа решений. Они описывают нестационарные 2миры. Области значений энергий 2-частиц E и размеров 2-миров a, соответствующих этим решениям, следующие:

$$I - (E_I < E_2, \ a \le a_{\max});$$

$$II - (E_1 < E_{II} < mc^2, \ a_3 \le a \le a_4);$$

$$III - (mc^2 \le E_{III} < E_2, \ a > a_{\min});$$

$$IV - (E_{IV} > E_2, \ a > r_g).$$
(48)

Графики, качественно определяющие в шварцшильдовой системе координат зависимость от времени радиуса кривизны 2миров, приведены на рис. 6.

Рис. 6. Схематичный вид возможных решений уравнения (40) при $L > \sqrt{3}mcr_g$. I, II, III, IV — типы решений, согласно (48). Стационарные решения: устойчивое – $(E = E_1, a = a_1)$; неустойчивое – $(E = E_2, a = a_2)$.

Решения типа I могут иметь место при $E \leq E_2$. Они описывают эволюцию 2-миров, которые бесконечно давно вышли из состояния «чёрная дыра» и бесконечно долго будут снова возвращаться в это состояние.

Осциллирующие 2-миры описываются решениями типа II. Эти решения могут иметь место при $\sqrt{8/9}mc^2 < E < mc^2$. Чем

ближе E к mc^2 , тем больше при заданных значениях параметров r_g и L амплитуда осцилляций.

Сжатие 2-миров, приходящих из бесконечности до минимального размера $a = a_{\min}$ (см. рис. 5), а затем их бесконечное расширение, описывается решениями типа III. Эти решения имеют место при $mc^2 < E \leq E_2$, $a \geq a_{\min}$.

Решения типа IV описывают расширения 2-миров, энергия частиц которых $E > E_2$, из состояния «чёрная дыра», в котором эти миры находились, при $t = -\infty$. Решения этого типа (при $E > E_2$) могут описывать также сжатие 2-миров до состояния «чёрная дыра». К этому состоянию они будут подходить бесконечно долго.

4. ДИНАМИКА 2-МИРА В СОПУТСТВУЮЩЕЙ СИСТЕМЕ КООРДИНАТ

4.1. Уравнение движения 2-мира в сопутствующей системе координат

В шварцшильдовой метрике (16) g₀₀ обращается в нуль, а g_{11} — в бесконечность при $r = r_q$ (на шварцшильдовой сфере). Это обстоятельство могло бы дать основание к заключению о невозможности существования 2-миров с «радиусом» (при заданной массе), меньшим гравитационного. В действительности такое заключение не является правильным (см., например, §102 [1]). Можно лишь утверждать, что метрику (16) невозможно использовать в области $r \leq r_g$. В шварцшильдовой системе координат время приближения 2-мира к состоянию $a = r_q$ оказывается бесконечным. В области $r < r_q$ метрические коэффициенты g₀₀ и g₁₁ становятся отрицательными, имеет место обмен ролями временной и радиальной координат. В виде (16) метрику Шварцшильда в области $r < r_q$ применять нельзя.

Шварцшильдова особенность в описании динамики 2-миров легко устраняется за счёт перехода к описанию их динамики в сопутствующей двумерной системе отсчёта. В этой системе любой типичный 2наблюдатель постоянно находится в 2-мире и в шварцшильдовой системе отсчёта совершает лишь радиальное движение. Расстояние типичного 2-наблюдателя до начала координат $R_2(\tau) = a(\tau)\theta$ (см. рис. 1). Переменная τ определяет собственное время 2наблюдателя.

Находясь в сопутствующей системе координат R_2 , ϕ , не выходя из 2-мира и учитывая лишь локальные его свойства, описать динамику 2-мира сложно. В то же время, зная уравнения, описывающие его динамику в шварцшильдовых координатах, переписать их на случай двумерной криволинейной, внутренней для 2-мира полярной системы координат (R_2, ϕ) не составляет труда. В процессе эволюции 2-мира меняется расстояние $R_2(\tau)$. Если $R_2(\tau)$ расстояние в момент времени τ , а $R_2(0)$ это же расстояние, но в начальный момент времени, то очевидно, что для любых 2-наблюдателей справедливо равенство $\xi(\tau) = R_2(\tau)/R_2(0) = a(\tau)/a_0$. Индекс 2 здесь и далее обозначает размерность 2-мира; $a(\tau)$ — радиус его кривизны.

Связь между собственным временем τ типичного наблюдателя и шварцшильдовым временем t находим из уравнения

$$c^{2}d\tau^{2} = \left(1 - \frac{r_{g}}{a}\right)c^{2}dt^{2} - \frac{da^{2}}{1 - r_{g}/a}.$$
 (49)

Учитывая, что a(t) удовлетворяет уравнению (40), из (49) находим

$$\frac{d\mathbf{\tau}}{dt} = \sqrt{1 - \frac{r_g}{a}} \frac{U(a)}{E}.$$
 (50)

С учётом (50) уравнение (40) принимает вид

$$mc^{2} \left(1 + \frac{L^{2}}{m^{2}c^{2}a^{2}}\right)^{1/2} \frac{da}{cd\tau} = (51)$$
$$= \left[E^{2} - U^{2}(a)\right]^{1/2}.$$

В отличие от уравнения (40), для уравнения (51) точка $a = r_g$ не является особой. Собственное время, за которое 2-мир проходит шварцшильдов радиус, оказывается бесконечно малым. Считаем, что уравнение (51) можно применять для описания динамики 2-мира не только в области $a > r_g$, но и при $0 \le a \le r_g$. Согласно (51), решения типа 1 и 2 при $L < \sqrt{3}mcr_g$ (см. рис. 4) и типа I и IV при $L > \sqrt{3}mcr_g$ (см. рис. 6) существуют не только при $a > r_g$, но и при $0 \leq a \leq r_g$. Они описывают динамику 2миров, возникших в результате «Большого взрыва». Характер поведения радиуса кривизны $a(\tau)$ для решений этого типа схематично изображён на рис. 7.

Рис. 7. Графики, качественно определяющие зависимость от времени радиуса кривизны 2-мира в сопутствующей системе коорлинат, описываемых решениями:

$$1 - (E < mc^{2}, L < \sqrt{3}mcr_{g}); 2 - (E > mc^{2}, L < \sqrt{3}mcr_{g}); 1 - (E < E_{2}, L > \sqrt{3}mcr_{g}); I - (E < E_{2}, L > \sqrt{3}mcr_{g}); IV - (E > E_{2}, L > \sqrt{3}mcr_{g})$$

Решения типа 1 и I являются финитными. Определяющую роль в динамике 2миров, описываемых этими решениями, играют силы гравитации. В решениях I $a < 3r_g$. Миры, описываемые решениями 1 и I, рождаются из сингулярного состояния в результате «Большого взрыва».

В решениях типа 2 и IV 2-миры также рождаются из сингулярного состояния в результате «Большого взрыва». При $E \gg mc^2$ они достаточно быстро достигают состояния равномерного расширения. Величина r_g/c является характерным временем перехода 2-мира в состояние равномерного расширения. При $E \gg mc^2$ и $a \gg r_g$ скорость расширения 2-миров в шварцшильдовой системе отсчёта близка к скорости света.

При $E \approx E_2$ решения типа IV описывают эволюцию 2-миров с длительной задержкой в развитии при $a \approx a_2$.

Графики, качественно характеризующие изменение радиуса кривизны 2-миров, описываемых решениями типа II и III (см. рис. 6), в сопутствующей и в швацшильдовой системах координат являются однотипными.

В сопутствующей системе координат состояние «чёрная дыра» отсутствует. Собственное время жизни 2-мира в состоянии $a = r_q$ бесконечно мало.

4.2. Космология 2-мира

Космологию 2-мира строим, используя сопутствующую систему отсчёта. Отметим некоторые особенности рассмотрения 2-мира с точки зрения произвольного 2наблюдателя. Изучая свой мир, он отметит следующее. Его мир является двумерным, однородным, изотропным и нестационарным. Радиус кривизны a одинаков во всех точках 2-мира. Геометрия его мира не является евклидовой, а центр его мира не является точкой его пространства. Если R_2 — радиус окружности в 2-мире, то, как видно из рис. 1, длина окружности

$$l_2(R_2) = 2\pi a \sin(R_2/a).$$
(52)

При $R_2 = 0, l_2 = 0$. Сначала l_2 растёт с ростом R_2 и достигает максимума $l_{2m} = 2\pi a$ при $R_2 = \pi a/2$. При дальнейшем увеличении R_2 длина окружности $l_2(R_2)$ уменьшается, а при $R_2 = \pi a$ она обращается в ноль.

Двумерный объём 2-мира, охватываемый окружностью радиуса R_2 равен

$$V_2(R_2) = 2\pi a^2 \left(1 - \cos\left(\frac{R_2}{a}\right)\right).$$
 (53)

Полный объём 2-мира

$$V_{2m} = 4\pi a^2.$$
 (54)

2-мир делит трёхмерное пространство на внутреннюю и внешнюю части. По отношению к трёхмерному пространству у 2-мира есть две стороны — внутренняя и внешняя. Внутренний объём, который 2-мир охватывает в трёхмерном пространстве, есть

$$V_3(a) = \frac{4}{3}\pi a^3.$$
(55)

Внешний объем, охватываемый 2-миром в трёхмерном пространстве, является бесконечным.

2-мир является двумерной однородной изотропной браной в трёхмерном пространстве. Радиус кривизны браны $a(\tau)$ меняется со временем. Динамика 2-мира определяется решениями уравнения (51). Изменение радиуса кривизны браны $a(\tau)$ определяется действием гравитационных и центробежных сил, действующих в третьем пространственном измерении. Эти силы на бране проявляются как силы притяжения и силы отталкивания. Для любых пар типичных наблюдателей справедливо равенство $\xi(\tau) = R_2(\tau)/R_{20} = a(\tau)/a_0$. Все расстояния $R_2(\tau)$ меняются подобно. Уравнение, описывающее изменение $a(\tau)$, определяет движение 2-частиц в третьем дополнительном к 2-миру пространственном измерении.

Относительное движение типичных наблюдателей подчиняется закону Хаббла: $dR_2/d\tau = H_2(\tau)R_2(\tau)$. Параметр Хаббла $H_2(\tau)$ не зависит от R_0 , а является функцией лишь времени $(H_2(\tau) = (da/d\tau)/a)$.

При описании динамики 2-мира в сопутствующей системе координат следует иметь в виду, что $da/d\tau$ не имеет смысла физической скорости каких-либо частиц. Нет оснований считать, что $da/d\tau$ не может быть большей, чем скорость света *c*. Эта ситуация аналогична имеющей место в фридмановском описании динамики однородной Вселенной (см., например, [2; 3; 7]). В то же время скорость пролёта частиц мимо любого типичного наблюдателя должна быть всегда меньше или равной скорости света *c*. Убедимся, что для любых типичных 2наблюдателей и 2-частиц это так.

Скорость, с которой 2-частицы пролетают мимо любого типичного 2-наблюдателя, определяется формулой $W = \pm a(d\phi/dt) \cdot (dt/d\tau)$. Учитывая (25), (50), находим

$$W(a) = \frac{cr_0}{\left(a^2 + r_0^2\right)^{1/2}},$$
(56)

где $r_0 = L/(mc)$.

В сопутствующей системе отсчёта распределение скоростей W 2-частиц по направлениям является изотропным. Эти скорости являются тепловыми. Из (56) видно, что скорости W 2-частиц всегда меньше скорости света. При L = 0, W = 0 2-среда является холодной, влияние сил отталкивания отсутствует. Если $L \neq 0$, то тепловые скорости движения 2-частиц отличны от нуля. Вблизи сингулярности $(a \rightarrow 0)$ эти скорости близки к скорости света. При расширении 2-мира тепловые скорости уменьшаются. В предельном случае $a \gg r_q$, $E > mc^2$ 2миры расширяются с почти постоянной скоростью. В шварцшильдовой системе отсчёта эта скорость всегда меньше скорости света, но при $E \gg mc^2$ мало от неё отличается. В области почти равномерного расширения $(a \gg r_g)$ при $E \gg mc^2$ тепловые скорости 2-частиц $W \ll c$. В предельном режиме 2-мир является холодной гравитирующей сферой, разлетающейся в шварцшильдовой системе отсчёта со скоростью близкой к световой.

Учитывая (56), уравнение (51) запишем в виде

$$\frac{1}{a^2} \left(\frac{da}{d\tau}\right)^2 + \frac{c^2}{a^2} =$$

$$= \frac{2GM}{a^3} + \frac{E^2}{m^2 c^2 (a^2 + r_0^2)}.$$
(57)

Это уравнение является первым интегралом уравнения

$$\frac{d^2a}{d\tau^2} = -\frac{GM}{a^2} + \frac{E^2 r_0^2 a}{m^2 c^2 (a^2 + r_0^2)^2} = -\frac{dU_{\text{eff}}}{da},$$
(58)

где

$$U_{\text{eff}} = -\frac{GM}{a} + \frac{E^2 W^2(a)}{2m^2 c^4}.$$
 (59)

Уравнения (57), (58) являются космологическими уравнениями для «горячего» 2-мира ($L \neq 0, W^2 \neq 0$). В отличие от стандартных космологических уравнений А. А. Фридмана эти уравнения содержат силы отталкивания. Как видно из (58), эти силы в 2-мире связаны с изменением тепловой энергии. Космологическое ускорение, создаваемое силами отталкивания, определяется формулой

Силы отталкивания в 2-мире являются центробежными по своей природе.

В случае «холодного» 2-мира (L = 0, $W^2 = 0$) силы отталкивания отсутствуют и уравнения (57), (58) принимают вид

$$\frac{1}{a^2} \left(\frac{da}{d\tau}\right)^2 + \frac{c^2}{a^2} = \frac{2GM}{a^3}, \qquad (61)$$
$$\frac{d^2a}{d\tau} = \frac{GM}{d\tau} \qquad (61)$$

$$\frac{a}{d\tau^2} = -\frac{GM}{a^2}.$$
 (62)

Эти уравнения являются космологическими уравнениями А. А. Фридмана для пылевидного 2-мира.

Решения уравнения (58) должны удовлетворять начальным условиям:

$$a(0) = a_0, \quad \frac{da}{d\tau}(0) = H_0 a_0.$$
 (63)

Решая (58) с начальными условиями (63), находим $a(\tau)$. Изменение концентрации n 2частиц в окрестности любого 2-наблюдателя определяется формулой

$$na^2 = n_0 a_0^2. (64)$$

Зная $a(\tau)$ и используя (56), находим, как в процессе эволюции 2-мира меняется дисперсия скоростей W^2 2-частиц.

5. НЬЮТОНОВСКОЕ ПРИБЛИЖЕНИЕ В ОПИСАНИИ 2-МИРОВ

Ньютоновское приближение в описании 2-миров может быть использовано в случае, когда скорость 2-частиц в шварцшильдовой системе отсчёта $v \ll c$. Динамика 2-мира в ньютоновском приближении исследована в [14]. Для удобства читателей ниже приведены результаты этого исследования.

Вводя обозначение $\varepsilon a_0^2 = E - mc^2$ и формально полагая $c = \infty$, из (35), (37) находим

$$\frac{1}{2}\left(\frac{da}{d\tau}\right)^2 + \frac{v_\perp^2}{2} - \frac{GM}{a} = \varepsilon a_0^2, \qquad (65)$$

$$v_{\perp}a = v_{\perp}(0)a_0. \tag{66}$$

Учтено, что в пределе $c \to \infty$ скорости W и v_{\parallel} определяются формулами $W = v_{\perp}, v_{\parallel} = da/d\tau$. Используя обозначения

$$\begin{aligned} \xi(t) &= a(t)/a_0, \quad d\xi/dt(0) = H_{\parallel}(0), \\ v_{\perp}(0) &= H_{\perp}(0)a_0, \quad \rho_0 = \frac{3M}{4\pi a_0^3}, \end{aligned} \tag{67}$$

уравнение (65) запишем в виде

$$\varepsilon = \frac{1}{2} \left(\frac{d\xi}{dt}\right)^2 + U_{\text{eff}}(\xi) = \text{const},$$
 (68)

где

$$U_{\rm eff}(\xi) = -\frac{4\pi G\rho_0}{3\xi} + \frac{H_{\perp}^2(0)}{2\xi^2}.$$
 (69)

Уравнение (68) является первым интегралом уравнения

$$\frac{d^2\xi}{d\tau^2} = -\frac{4\pi G\rho_0}{3\xi^2} + \frac{H_{\perp}^2(0)}{\xi^3} = -\frac{dU_{\text{eff}}}{d\xi}.$$
 (70)

Решения этого уравнения удовлетворяют начальным условиям

$$\xi(0) = 1, \quad \frac{d\xi}{d\tau}(0) = H_{\parallel}(0).$$
 (71)

Уравнение (70) аналогично уравнению, описывающему одномерное движение частицы в потенциальном поле $U_{\text{eff}}(\xi)$ (см., например, [20]). Используем эту аналогию для качественного анализа решений уравнения (68).

На рис. 8 и 9 приведён вид функций $U_{\text{eff}}(\xi)$ для случаев $v_{\perp}(0) = 0$ ($H_{\perp}(0) = 0$) и $v_{\perp}(0) \neq 0$ ($H_{\perp}(0) \neq 0$). Из (70), (71) видно, что динамика 2-мира в ньютоновском приближении определяется заданием трех параметров

$$\rho_0, \quad H_{\parallel}(0), \quad H_{\perp}(0).$$
 (72)

2-миры могут отличаться размерами a_0 , но при одинаковых значениях параметров (72) их динамика будет подобной. В зависимости от значений параметров (72) возможны различные типы решений, описывающих 2миры. Характер эволюции 2-мира определяется энергией ε .

Рис. 8. Вид функции $U_{\text{eff}}(\xi)$ при $H_{\perp} = 0$

На рис. 10 схематично изображены области параметров $H_{\parallel}(0)$ и $H_{\perp}(0)$, для которых при фиксированном значении ρ_0 энергия $\varepsilon < 0$ (или $\varepsilon \ge 0$) и 2-миры имеют различный характер эволюции.

Рис. 9. Вид функци
и $U_{\rm eff}(\xi)$ при $H_\perp \neq 0$

Рис. 10. Области параметров $H_{\parallel}(0)$ и $H_{\perp}(0)$, для которых энергия $\varepsilon < 0$ или $\varepsilon \ge 0$ и 2-миры имеют различный характер эволюции; $H_c = \sqrt{8\pi G \rho_0/3}$

Используя начальные условия, энергию можно записать в виде

$$\varepsilon = \frac{3\pi G}{4} (\rho_c - \rho_0), \qquad (73)$$

где

$$\rho_c = \frac{3}{8\pi G} \left(H_{\parallel}^2(0) + H_{\perp}^2(0) \right).$$
 (74)

Характер эволюции 2-миров при $\varepsilon < 0$ ($\rho_0 > \rho_c$) и $\varepsilon \ge 0$ ($\rho_0 \le \rho_c$) схематично изображён на рис. 11 и 12. На эволюцию 2-мира существенно влияет параметр $H_{\perp}(0)$, определяющий дисперсию скоростей 2-частиц. Его влияние аналогично влиянию параметра $H_{\parallel}(0)$. При $H_{\perp} \geq H_c = \sqrt{8\pi G \rho_0/3}$ даже вначале покоящийся 2-мир, расширяясь, уйдёт на бесконечность. При любых $H_{\perp}(0) \neq 0$ решения, описывающие 2-мир, не имеют сингулярности. При $\varepsilon < 0$ и $H_{\perp}(0) \neq 0$ имеет место осцилляторная динамика 2-мира. Область изменения ξ : $\xi_{\min} \leq \xi \leq \xi_{\max}$, где ξ_{\min} и ξ_{\max} — корни уравнения $\varepsilon = U_{\text{eff}}(\xi)$.

Рис. 11. Типы решений, описывающие 2-миры, при $H_{\perp}=0$: $\varepsilon<0$ — финитный 2-мир; $\varepsilon\geq0$ — инфинитный 2-мир

Рис. 12. Типы решений, описывающие 2миры, при $H_{\perp} \neq 0$: $\varepsilon < 0$ — осциллирующий 2-мир; $\varepsilon = U_m$ — стационарный 2-мир; $\varepsilon \ge 0$ — инфинитный 2-мир

При $\varepsilon \geq 0, H_{\perp}(0) \neq 0$ уравнение $\varepsilon = U_{\text{eff}}(\xi)$ (см. рис. 9) имеет лишь один действительный корень ξ_{\min} . В этом случае область изменения $\xi: \xi \geq \xi_{\min}$. Как при $\varepsilon < 0$, так и при $\varepsilon \ge 0$, в области $\xi < \xi_m = 3H_{\perp}^2(0)/(4\pi G\rho_0)$ расширение 2-мира происходит с ускорением, а при $\xi \ge \xi_m$ с замедлением. Ускоренного режима расширения 2-мира в области значений ξ , больших, чем ξ_m , нет.

2-среда в окрестности любого 2наблюдателя описывается плотностью $\rho_2 = n_2 m$, удельной тепловой энергией $\varepsilon_2 = v_{\perp}^2/2$ и давлением P_2 . Считаем, что давление — это удельная тепловая энергия, приходящаяся на две степени свободы. В соответствии с тем, что 2-газ является двумерным, заключаем, что справедливо уравнение состояния

$$P_2 = \varepsilon_2 = v_\perp^2 / 2. \tag{75}$$

Здесь и далее индекс 2 обозначает величину, определяемую в пространстве двух измерений.

Из закона сохранения массы находим, что в процессе эволюции 2-мира плотность ρ_2 связана с изменением радиуса кривизны *а* формулой

$$\rho_2(t) = \rho_{20}(a_0/a)^2 = \rho_{20}/\xi^2(t).$$
(76)

Учитывая (66) и (75), заключаем, что энергия ε_2 и давление P_2 связаны формулами:

$$\varepsilon_2(t) = P_2(t) = P_{20}(a_0/a)^4 = P_{20}/\xi^4(t).$$
 (77)

Это уравнение может быть записано в виде адиабаты Пуассона:

$$P_2 V_2^2 = \text{const.} \tag{78}$$

Отсюда заключаем, что эволюция 2-мира является адиабатическим процессом с показателем адиабаты $\gamma = 2$. В идеальном газе показатель адиабаты γ связан с числом степеней свободы f частиц, его составляющих, соотношением [21]

$$\gamma = (f+2)/f. \tag{79}$$

Так как для 2-частиц f = 2, то $\gamma = 2$.

С учётом адиабатичности $d(\varepsilon_2 V_2) = -P_2 dV_2$ первое начало термодинамики для 2-мира может быть записано в виде

$$\frac{d\varepsilon_2}{da} + 2(\varepsilon_2 + P_2)\frac{1}{a} = 0.$$
(80)

Это уравнение является одним из космологических уравнений А. А. Фридмана для 2мира. Другим уравнением А. А. Фридмана для 2-мира является уравнение (70) (о космологических уравнениях А. А. Фридмана см., например, [2; 3; 7]). Уравнение (70) является обобщённым уравнением А. А. Фридмана, учитывающим действие объёмных центробежных сил (см. [14; 15]). С учётом (66), (67) уравнение (70) запишем в виде

$$\frac{d^2a}{dt^2} = -\frac{GM}{a^2} + \frac{v_{\perp}^2}{a}.$$
 (81)

Ускорение v_{\perp}^2/a связано с изменением тепловой энергии 2-среды в процессе эволюции 2-мира. В самом деле, учитывая (66), заключаем, что

$$\frac{v_{\perp}^2}{a} = -\frac{d}{da} \left(\frac{v_{\perp}^2}{2} \right) = -\frac{d\varepsilon_2}{da}.$$
 (82)

Плотность тепловой энергии, достаточной для обеспечения ускоренного расширения однородной космической среды на определённом этапе её эволюции, может быть много меньше энергии ρc^2 . Это означает, что центробежные силы принципиально отличаются по энергетике от сил отталкивания, связанных с «тёмной энергией» (Л-членом). Для создания эйнштейновских сил отталкивания, соизмеримых с силами притяжения, плотность «тёмной энергии» должна быть порядка плотности энергии ρc^2 среды, порождающей гравитационное поле (см., например, [6; 7]).

В заключение этого параграфа отметим, что при изучении динамики Вселенной часто используют ньютоновскую теорию тяготения (см., например, [2; 3]). Утверждается, что ОТО не является необходимой для решения локальных проблем в космологии. Полагают, что в этом случае ньютоновская теория является точной.

Как следует из полученных в настоящей работе результатов, если масса 2-мира M, а его радиус кривизны а, то ньютоновское приближение справедливо лишь в том случае, когда

В силу однородности 2-мира, имеет место подобие законов, описывающих его локальные и глобальные свойства. Для любых $0 \leq R_0 \leq a_0$ закон изменения $\xi = R(t)/R_0$ один и тот же. Он такой же, как у $a(t)/a_0$. Поэтому, если ньютоновское приближение в описании 2-мира справедливо, то оно справедливо для всех масштабов. Если же условие (83) не выполняется, то использование ньютоновского приближения для описания 2-мира на любых масштабах является некорректным. Его динамику в этом случае необходимо изучать в рамках ОТО. Отметим, что, например, в ньютоновском приближении отсутствуют решения типа I и IV, описывающие динамику 2-миров с моментами частиц отличными от нуля и рождённых в результате «Большого взрыва».

А. Г. Жилкин, В. А. Клименко, А. М. Фридман

ОБ ЭЙНШТЕЙНОВСКИХ СИЛАХ 6. ОТТАЛКИВАНИЯ

В работе [22] нами исследована динамика двумерных однородных сферических миров, заполненных безмассовыми частицами (2R-миров). Показано, что последовательное описание динамики 2R-миров в рамках ОТО в пространстве трёх измерений приводит к физически наблюдаемому эффекту. В этих мирах, кроме сил притяжения, возникают силы отталкивания. Источником этих сил является тепловая энергия частиц. Силы отталкивания в шварцшильдовой системе координат являются центробежными. Они действуют во внешнем для 2R-миров третьем пространственном измерении, растягивая их. В сопутствующей системе отсчёта силы отталкивания являются эйнштейновскими и описываются Л-членом уравнений ОТО.

Рассмотренный в [22] пример, обобщённый на трёхмерный случай [23], позволяет, как мы полагаем, правильно понять природу эйнштейновских сил отталкивания.

ЗАКЛЮЧЕНИЕ 7.

В настоящей работе показано следующее.

1. Важную роль, в значительной степени определяющей динамику 2-миров, игра-

$$a \gg r_g = 2GM/c^2. \tag{83}$$

ют параметр r_g — их гравитационный радиус, а также взаимосвязанный с ним параметр r_g/c . Первый является естественным пространственным, а второй — временным масштабом 2-миров.

2. Динамика 2-миров определяется не только гравитационными силами, но также и силами отталкивания. Существование сил отталкивания в 2-мирах связано с тепловым движением частиц, заполняющих эти миры. Эти силы зависят от радиуса кривизны пространства 2-миров, а также существенным образом от выбора системы координат, в которой проводится описание динамики этих миров.

3. Рассмотрена эволюция 2-миров в шварцшильдовой системе координат, являющейся внешней по отношению к ним. В этой системе координат состояния 2-миров, имеющих радиус кривизны а равный гравитационному радиусу r_q , являются «чёрными дырами». Время входа 2-миров в состояние «чёрная дыра» и время их выхода из этого состояния в шварцшильдовой системе координат оказывается бесконечным. Силы отталкивания являются центробежными. Они действуют в третьем, внешнем к 2-мирам пространственном измерении. Влияние сил отталкивания на динамику 2-миров определяется вращательным моментом 2-частиц L. Динамика 2-миров, имеющих значение параметра $L > \sqrt{3}mcr_q$, где m — масса 2-частиц, может существенно отличаться от динамики 2-миров с $L < \sqrt{3}mcr_a$. Например, в первом случае для 2-миров возможны устойчивые стационарные состояния, а также колебательные режимы их эволюции, которые у 2-миров второго типа отсутствуют. Шварцшильдова система координат не позволяет изучать динамику 2-миров, имеющих размеры меньшие, чем их гравитационный радиyc.

4. Динамика 2-миров любых размеров изучена в сопутствующей системе координат, являющейся внутренней для них. Показано, что в этой системе координат шварцшильдова особенность при $a = r_g$ отсутствует. Собственное время, за которое 2мир проходит шварцшильдов радиус, оказывается бесконечно малым. Установлено, что при значениях параметра $L < \sqrt{3mcr_g}$ возможны два типа решений, описывающих динамику 2-миров: финитные и инфинитные. Миры, описываемые этими решениями, рождаются из сингулярного состояния в результате «Большого взрыва». Финитные решения описывают расширение 2-миров с замедлением, которое заканчивается их остановкой, а в дальнейшем — сжатием этих миров в начальное сингулярное состояние. Инфинитные решения описывают расширение 2-миров после «Большого взрыва» с уходом их на бесконечность. При значениях параметра $L > \sqrt{3mcr_g}$, кроме двух типов решений, описывающих 2-миры с $L < \sqrt{3}mcr_q$, возможны ещё два других типа решений. Один из них описывает осциллирующие миры, другой — 2-миры, приходящие из бесконечности. Согласно этим решениям, 2-миры, сжавшись до некоторого минимального размера, затем расширяются и снова уходят на бесконечность. Если энергия 2-частиц достаточно велика ($E \gg mc^2$), то 2-миры достаточно быстро достигают состояния равномерного расширения. При этом скорость расширения этих 2-миров в шварцшильдовой системе координат оказывается близкой к скорости света. Характерное время перехода 2-миров в режим равномерного разлёта определяется величиной параметра r_q/c .

Отметим также следующее. В настоящей статье приведены результаты работы [14], в которой динамика 2-миров исследована в ньютоновском приближении. Уже в рамках этого приближения можно понять природу сил отталкивания в 2-мирах. В то же время правильное описание динамики 2-миров возможно лишь в рамках ОТО. Метод описания динамики 2-миров, использованный в настоящей работе, легко обобщается на случай однородной изотропной трёхмерной безграничной среды, каковой и является Вселенная. Это обобщение будет описано в следующей работе авторов.

Авторы выражают благодарность В. Н. Лукашу, И. Д. Новикову, А. В. Клименко, А. М. Черепащуку, И. Г. Шухману, обсуждение с которыми проблемы космологических сил отталкивания было одним из важных стимулов для выполнения настоящей работы. Авторы признательны Н. Ю. Жилкиной за помощь в подготовке статьи. Работа выполнена при поддержке Российской академии наук (программа Президиума 19), Российского фонда фундаментальных исследований (проекты 08-02-00371, 09-02-00064), Федерального агентства по науке и инновациям, и средств Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг.

СПИСОК ЛИТЕРАТУРЫ

- Ландау, Л. Д. Теория Поля / Л. Д. Ландау, Е. М. Лифшиц. М.: Наука, 1988.
- Зельдович, Я.Б. Строение и эволюция Вселенной / Я.Б. Зельдович, И.Д. Новиков. М.: Наука, 1975.
- Вайнберг, С. Гравитация и космология. М.:Платон, 2000.
- Perlmutter, S. Measurements of Ω and Λ from 42 High-Redshift Supernovae / S. Perlmutter, G. Aldering, G. Goldhaber et al. // Astroph. J. 1999. Vol. 517, № 2, P. 565–586.
- Riess, A.G. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant / A.G. Riess, A.V. Filippenko, P. Challis et al. // Astron. J. 1988. Vol. 116, № 3, P. 1009.
- Чернин, А.Д. Тёмная материя и всемирное антитяготение // УФН. 2008. Т. 178, № 3, С. 267–300.
- Горбунов, Д. С. Введение в теорию ранней Вселенной. Теория горячего большого взрыва / Д. С. Горбунов, В. А. Рубаков. М.: ЛКИ, 2008.
- Hinshaw, G. Three-year wilkinson microwave anisotropy probe (WMAP) observations: implications for cosmology / G. Hinshaw, M. R. Nolta, C. L. Bennet et al. // Astrophys. J. Suppl. 2007. Vol. 170, № 2, P. 377–408.
- 9. Astier, P. The Supernova Legacy Survey: measurement of Ω_M , Ω_Λ and w from the first year data set / P. Astier, J. Guy, N. Regnault et al. // Astron. and Astrophys. 2006. Vol. 447, N^o 1. P. 31–48.

- Riess, A.G. New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy / A.G. Riess, L.-G. Strolger, S. Casertano et al. // Astrophys. J. 2007. Vol. 659. № 1. P. 98.
- Лукаш, В. Темная энергия: мифы и реальность / В. Н. Лукаш, В. А. Рубаков // УФН. 2008. Т. 178, № 3. С. 310–308.
- Черепащук, А. М. Современная космология — наука об эволюции Вселенной / А. М. Черепащук, А. Д. Чернин // Бюллетень РАН «В защиту науки». 2008. №4.
- Глинер, Э.Б. Раздувающаяся Вселенная и вакуумоподобное состояние физической среды // УФН. 2002. Т. 172, № 2. С. 221–228.
- 14. Клименко, В.А. О центробежной природе «тёмной энергии» / В.А. Клименко, А.М. Фридман М.: ИАЭ, 2009. Т. 6597/1.
- Клименко, А.В. О равномерном расширении Вселенной / А.В. Клименко, В.А. Клименко, А.М. Фридман // Астрон. журн. 2010. Т. 87. № 10. С. 947–966.
- Randall, L. An Alternative to Compactification / L. Randall, R. Sundrum // Phys. Rev. Lett. 1999. Vol. 83. P. 4690–4693.
- Maartens, R. Brane-World Gravity // Living Reviews in Relativity. 2004. Vol. 7, № 7.
- Поляченко, В. А. Равновесие и устойчивость гравитирующих систем / В. А. Поляченко, А. М. Фридман. М.: Наука, 1976.
- Мизнер, Ч. Гравитация : в 3 т. / Ч. Мизнер, К. Торн, Д. Уиллер. М. : Мир, 1977.
- Ландау, Л. Д. Механика / Л. Д. Ландау, Е. М. Лифшиц М.: Наука, 1988.
- 21. Киттель, Ч. Статистическая термодинамика. М.: Наука, 1977.
- Жилкин, А. Г. Об эйнштейновских силах отталкивания / А. Г. Жилкин, В. А. Клименко, А. М. Фридман // Докл. Акад. наук. 2010. Т. 435, № 6. С. 748–751.
- Жилкин, А.Г. Динамика трёхмерных однородных изотропных релятивистских миров / А.Г. Жилкин, В.А. Клименко, А.М. Фридман // Вестн. Челяб. гос. унта. 2013. № 19 (310). Физика. Вып. 17. С. 29–42.